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ON THE EXCITATION OF OSCILLATIONS BY PARAMETER VARIATION 
(HETERO-PARAMETRIC EXCITATION) 

     By V.A. LAZAREV 
  
Abstract: An experimental examination of hetero-parametric excitation — based on the principles of L. 
Mandelstam and N. Papaleski — was obtained by the construction of an alternating-current parametrical 
generator.  
Additionally, this generator had, as part of its construction, periodic mechanical undulation of the self-
induction in order to observe the effect of their modification. Among the various factors that were surveyed 
included: logarithmic decrement of damping, depth of self-induction modulation, windage loss and 
relaxation time of the disk, and the amplitude conditions of quantity, excitation, and magnitude. The 
experiments revealed that there are two varying conditions of stationary (steady state) amplitude.  
This is consistent with the theory developed by L. Mandelstam and N. Papaleski, which proves to be as true 
quantitatively as qualitatively (within the limits of accuracy of the observations of the experimental results 
described here).  
 

Introduction 
The present work represents an experimental foray into research on the phenomena, 
including examining the appearance of oscillation excitation levels taking place by means 
of the periodic modification of self-induction in the oscillating system (hetero-parametric 
excitation) and a qualitative verification of the theoretical results given by L.I. 
Mandelstam and N.D. Papaleski. Before communicating the experimental data acquired, 
it is probably expedient to briefly compare the principal conclusions developed by the 
above-named authors and to also specify those theoretical assumptions upon which it was 
formulated. As the work of L.I. Mandelstam and N.D. Papaleski has shown,1 in 
electrically oscillating systems in which there are no special radiating electric or magnetic 
fields it is possible to excite and have long term electrical oscillations by means of (either 
electrical or mechanical) periodic  modifications of the self-induction or capacitance of 
the systems. Thus, the following are the basic conditions for such excitation (which has 
received the label of hetero-parametric excitation):  

a) It is necessary to modify the frequency controlling parameters at approximately 
twice greater than the system’s average fundamental frequency.  

b) It is necessary to observe certain parameter relations between the magnitude of 
the parameter modifications (stipulating the magnitude input into system from the 
external fields) and the magnitude of the average characteristic logarithmic decrement of 
damping (such that the input power into the system exceeds the losses within in it).  
 
                                                 
1L.I. Mandelstam and N.D. Papaleski. See above  
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More accurate information about these requirements is gained by reviewing the so-called unstable solutions 
of linear differential equations with periodic coefficients, in which (considering a modification of self-
induction) the oscillating condition of the system reduces to,  
 

( )tmLL ω2sin10 +=   .              (1)  
 
That leads to the following differential equation  
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It is possible here to formulate more precisely the [necessary] requirements as follows:  
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  is the relative quantity of the parameter change (the so-called “depth of 

modulation” of the parameter). Requirement (4) can be written in a slightly different form. If we insert 
“detuning”, namely:  

,2

2
0

2

ω
ωωξ −

=                                          (5)  

 

where    
2

22

2

22

44 π
δξ

π
δ

−−≥≥−
mm .                          (6)  

 
then, the quantity of the hetero-parametric field excitation, as expressed throughξ , is equal to  
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Equations 3, 6 and 7 are sufficient to guarantee the occurrence of oscillations. It is also necessary to note 
that, in the beginning of the process the vibration amplitude accrues approximately under the law:  
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In order to derive the magnitude of the stationary amplitude it is necessary to consider the influence of the 
factors limiting unbounded amplitude growth in systems for which such growth is impossible without such 
growth being introduced. Such factors depend upon the magnitude of resistance included in the system, i.e. 
-  a circuit of incandescent lamps or self-induction in iron-core coils (such as that taking place in the present 
research, which uses a nonlinear relation between the magnetizing current and magnetic induction). On 
account of these factors, the mathematical problem of determining the stationary amplitude leads to the 
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solution via nonlinear differential equations. In the specific theoretical analysis, the 
approximate solution of this problem is given for some simple cases; for example when 
there is an expressed relation between the current and the magnetic flux, or when a cubic 
parabola is given:  

3
2 ii γα +=Φ                      (91)  

or, as based on the citation below,2 
     iikarctg αγ +=Φ 2    .                                           (101)  
 

It is thus supposed that only the linear part of the self-induction system is exposed to an 
exterior periodic modification and looks like the differential equation expressed as  
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For a quadratic voltage amplitude on the condenser, X2, the following approximate values 
emerge. In the first case  
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Examination of the stability of these solutions has shown that they are inconvertible for 
all values ξ , starting from  
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up to that quantity ξ  for which estimates were made considering the order of smallness 
that will hold good for µδ and,, .m   

                                                 
2 From the work of V.P. Gulyaeva and V.V. Megulena, Limited release. 
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In particular the possible incontrovertible values of 2
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m , i.e. (  in Eq. 9) for 

limits of the excitation field. The phenomenon differs here in that a reduction (in the 
frequency hysteresis) is possible.  

Φ

 
An examination of hetero-parametric excitation is given below that is based on an 
original manner of varying the self-induction of the vibrating system that is different 
from that of L.I. Mandelstam and N.D. Papaleski. The present apparatus consists in 
periodically introducing the metal masses of a toothed wheel into an array of coils that 
constitute the self-induction coils of the oscillating system.3 Here, the alteration of self-
induction results from a modification of the magnetic energy of the system due to 
Foucault’s magnetic field currents occurring in the moving toothed wheel. This specific 
case differs from the idealized models for an oscillating system with variable self-
induction considered above in that here the self-induction of the system is not 
immediately effected, but varies with changes in the system’s metal masses where it is 
possible to incorporate them into a closed coil (a toroidal-ring), and where the self-
induction and resistance (which do not remain at constant levels during the mechanical 
motion and electrical driving current) are “modulated” simultaneously with the mutual 
induction. On the one hand, the rigorous theory of this case represents a series of greater 
difficulties (and is not developed yet). On the other hand, it is possible to obtain a first 
approximation to reduce the effort required to analyze this case as one of periodic 
modification of self-induction. So, we shall start by reducing the above formulas.  
 

Description of the Apparatus  
For carrying out the hetero-parametric excitation experiments, we constructed an 
experimental apparatus in which the parameter L was varied by an exterior mechanical 
force. For this purpose, an original machine for testing hetero-parametric excitation 
oscillations was built. In this case, the machine’s stator frames were made of a dry 
Karelian birch wood, and consisted of two halves with the miniscule clearance of a 
millimeter between them. In this case, 8 series-connected coils with identical distances 
from each other were arranged around a toothed disk of 30 cm diameter. There were, in 
total, 126 turns (wound with wires of 1.56 mm diameter on special laminated iron stator 
cores) on each of the induction coils. In figures 1 and 2 we show the stator in the side 
view and the coil separately. A 30 cm diameter duraluminum disk was placed within the 
stators, having a clearance of 6 mm, with a 3 mm thickness. 8 teeth were cut out upon the 
periphery (the same as the number of coils), which were equally spaced around the 
circumference. The sizes of the teeth were defined by the cross section of the stator cores. 
Their length was 5 cm, and their breadth 4 cm. In figure 3 the disk is shown separately. 
Hence the teeth have been constructed so that they could be fitted bodily inside the 
housing where the coils are located, and fitted in the air gaps between the coils in the air 
gap in the individual stator cores. Figure 4 shows the machine without its upper stator. 
Figure 5 is a general view of the machine with a driver part given. The entire system was 
set in motion by a 3-phase current type of motor manufactured by the Electric Power 
Factory.  

                                                 
3 From L.I. Mandelstam and N. Papaleski, loc. cit. page 5. 
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Using 220/127 VAC with a power of 4.5 kW, we achieved about 1430 revolutions per 
minute with this motor and, additionally, we attached a 30 kilogram flywheel to the 
motor’s shaft. The motor has been connected with the toothed disk of the machine 
through a 10-fold speed reducer running in reverse as a speed “increaser”, so that the 
speed of the disk reached up to 14,300 revolution per minute.  
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We had special ball bearings cast for the disk’s sh
demonstration of the low friction of these bearing
easily.4  

 
4  It is necessary to note the critical and invaluable par

I. Resnika, in the development of these laboratory in
    Figure 1: Single Coil with Laminated Cor
 Figure 2: Assembled Stator Coils in Fram
 
            Figure 3: Toothed Disk Roto
  

igure 4: Rotor Assembled in Bottom Half 
f Stator  

aft and applied forced lubrication. As a 
s, when the disks were struck they would move 

ticipation of the laboratory’s mechanic-designer, M. 
stallations. 



 35

When the disk rotates, there is a common reactance acting between the teeth and the laminated 
core coils while the reactance among the stator coils varies, and, consequently, the self-
inductance of the system varies. When the teeth are in the air gap of the coil’s laminated cores 
there is a minimum of self-induction, and, contrastingly, when the teeth are between the 
coils there is a maximum of self induction. When the motor with the speed increaser is 
operating the toothed disk at a speed of N=14,300RPM, the periodicity of the self induction of the 

stator varies near the frequency n = 
60
8N

= 1900 hertz (or close to that). Hence, having attuned the 

system to the median frequency of 950 hertz and having the power available to drive the system, 
we raised the oscillations frequency to 950 hertz. And, we could vary the drive power of the 
excited oscillations, as we desired, in a controlled fashion that reached up to 4 kilowatts.  
 
Investigation of the Excitation 
Requirements  
 
First of all, the conditions for the 
occurrence of the fluctuations have been 
previously investigated for hetero-
parametric excitation. These conditions 
are given by the formulas 3, 6, 7 and 8.        
 
For a check of Equation (3) in the above 
described installation, the depth of 
modulation was measured as well as 
the logarithmic decrement of the system. 
All measurements were made via the 
Vitstona bridge at a frequency of 950 hertz
output used a Hartman and Brown meter w
Galska self-induction reference of 0.1 Henr
defined via the corresponding bridge as we
the resonant circuit, along with the three oth
resonance, the bridge can be balanced clean
contour simultaneously by both measuring 
bridge an additional resistance reference. O

m

(aggregate capacity losses) and RL (aggrega
via self-induction, represents the total loss i
then becomes especially necessary to addre
role of the disk consists of putting energy in
teeth, which interact with the currents of th
group of coils. In other words, a tooth “stan
pushing “against” the coils is labile and doe
in between the coils, the system possesses a
maxima. When transitioning from the first s
mechanical energy, and obtain operation E
labile equilibrium in a non-convertible s
amount of energy that had been acquired 
equilibrium stage to that left by the second 

∆
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 For the self-induction measurement, the bridge’s 
th a resistance of 100,000 ohms and a Siemens and 
y, where the natural frequency of the equipment was 
l. In this case the measured output itself represented 
er ohmic resistances. During a contour moment 
ly by ohmic resistance. Loss data was taken at the 
self-induction and capacity, while introducing to the 
verall losses of the contour developed in two parts: RC 
te losses via self-induction). The aggregate loss data, 
n the winding, the iron cores used, and the disk. It 
ss the question of losses originating in the disk. The 
to the system. The Foucault currents along the disk’s 
 coils, causes the teeth to be pushed out from the 
ding” in between coils does not convert energy, and 
s convert energy. Hence while the teeth are standing 
n energy minimum, while the in the second position a 
tance (in between coils) to the second, we expend 
1. And backward, at the next transition, from a 
ystem would be to return energy E2. The total 
uring the system’s transition from the first 

stage will be equal to 
021 >−= EEE                                             (15) 
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Equation (15) is enacted due to the establishment of a corresponding phase of the position 
between coil current and a standing disk in space. On the other hand, the disk is a main 
constituent of the entire vibrating system, and we should not import to it greater current losses, as 
the requirement of self-excitation (3) otherwise will not be satisfied. In other words, the 
relaxation time of the disk should not be less than a certain [specified] quantity.  
 

This requirement boils down to the Foucault currents induced 
with the disk, which could not be damped during the allotted 
time, for the required tooth transition from the given coil to the 
next nearest one. Otherwise, it would be difficult to present the 
process of increase. The disk should be the current carrier from 
one coil to another and thus induce in the coils additional 
impulses, which are the origin of any further increases in 
oscillation.  

         
 
Figure 6. 

  
The fact is that these additive impulses are induced by a disk 
among coils, and  
should be in phase with the currents already extant in the coils. 
This demands that the frequency of the contour is in a certain 

specific relation to the frequency of modulation of the self-
induction, where a frequency relation of 1:2 is especially 
effective. 
 

It was necessary to measure observationally in order to find out what the standard requirement 
concerning relaxation time is as displayed on a disk. However, owing to the necessity of the 
special synchronization of impulses, to yield such measurement data above a toothed disk turned 
out to be inconvenient and we were restricted to only our experiments with continuous disks.  
 

Definition of Relaxation Time in Continuous Disks  
 
We have produced measurement data of the relaxation time in a continuous (non-toothed) 
rotating duraluminum disk. Our experience is put as follows.  
 
For the toothed disk in the previously described parametric machine we substituted a continuous 
disk, of the same diameter, made from duraluminum but with a thickness of 3 mm. The 8-coiled 
stator, which can be seen separately in Figure 2, had noticeable separations between themselves. 
The continuous disk rotated without difficulty in the inter-polar space between the coils. One of 
the coils A (Figure 6) was moved, over a major time interval (in one to two minutes), via identical 
impulses of direct current.  
 
The quantity of impulses crept up such that, at the final submission at coil A during the 
immobilization of the disk, galvanometer Γ, which is part of a network of the nearest next coil 
(for us, the millivoltmeter of the Drains firm on 17 mV with its own period of 2 seconds has been 
included, with an internal resistance of 325 ohms). This was fed through detector P which did not 
prove difficult. The identification of the impulse could be easily attained using a closure current 
on network A. The Raznitsa coil in the dross of the galvanometer, where repeated closures did not 
surpass 0.5 divisions.  
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The closures for coil A were on the order of several tens of mA. For more of a quiescent 
operation the last detector has been glued with a thin layer of gum adhesive to a stone tile 
for support. Thus the mechanical period of the detector has been made very much greater 
in comparison with the period of parasitic mechanical fluctuations caused by the rotations 
of the rotor.  
 
The current induced in the disk is also induced in coils I 
through VIII, the magnitude of which was recorded by the 
detector (after rectification)  by the maximum deflection 
of the ballistic galvanometer Γ. The individual 
galvanometer results were taken with the various coils, 
beginning with I and continuing on up through VII 
inclusive, and for each coil a maximum ballistic deflection 
recording was separately made. Hence measurements 
were completed by turns for each coil, beginning with I 
and on up through VII, via the detector on the 
galvanometer Γ, while a separate impulse in coil A 
moved. Having yielded some times for all the 
measurement series, we have received a maximum 
deflection value for them averaged together, as well as for 
each coil separately. The observed data is given in Table 
1. In figure 7, the diagram of signal attenuation current in 
the disk over time is presented, and our experimentation 
shows that transit time from one point on one coil to 
another point on a separate coil 5.2 X 10-4 seconds. This resulting curve coincides with an 
exponential curve, and the relaxation time is equaled as t = 11.7 X 10-4 seconds. The 

value of an ordinate corresponding to a zero 
abscissa is calculated under the 
formula . Of the curve that is visible, 
the fulfillment by one turn of the disk, the 
current falls by 2.5% of its initial size. In the 
third tabulation column of Table 1, the 
calculated values of the function are given.  

jwteII −= 0

 
Before providing results of comparing Eq. (3) 
with experience, it is necessary to stop on one 
phenomenon that has influence on the depth of 
modulation and consequently a requirement for 
self-excitation of these Foucault bias currents in 
both moving as well as conducting mediums. 

The providing of a bias field for a rotating 
disk consists of the following: Let some 

variable field with a cross-sectional area S that induces an electric current in an immobile 
conductor. The topography of the induced current, especially in metal, that it will capture 
a magnetic field while “getting into” the metal. As a result, a primary field is erected 
between “the electrical coil,” and the self-induction coil. Some mutual induction will 

                  Table 1 

t x 10-4 sec Exper Theor

A 0,0 - 34,40 

I 5,2 2,2 22,30 

II 10,4 14,5 14,20 

III 15,6 9,0 9,10 

IV 20,8 6,4 5,80 

V 26,0 4,0 3,73 

VI 31,2 2,5 2,40 

VII 36,4 1,5 1,54 

VIII 41,6 - 0,90 

Figure 7: Curve of a waning magnetic field 
in a rotating disk  
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define a response of a continuous conductor on a coil, i.e. on it self-inductance and ohmic 
resistance. The question is asked whether there will be a reaction of a continuous 
conductor to the coil will be the same if that conductor results in a forward rotary 
movement, i.e. whether the theory will underestimate the field generated by an electric 
coil in the same position concerning the coil, or if the driving movements of the 
conductor will drift. If drift exists, the common reactance should decrease, the self-
inductance of the coil to increase, and ohmic resistance to decrease. For experimental 
checks of this phenomenon, we used the same adjustment for all of the received data 
described above. The machine’s stators were joined to the Vitstona bridge. The current in 
the bridge when the disk was immobilized was compensated for, then the disk was 
activated. Already at low revolutions the neutralization was broken. As recorded in Table 
2 the observed data is given. 

 
Table 2 

State of Disk L  
Stators ∆L 100

L
L∆  

Moving   0,0342 
Unmoving   0,0250 0,0008 3,2% 

Moving   0,0242 
Unmoving   0,0250 0,0008 3,2% 

Moving    0,02425 
Unmoving   0,0250 0,00075 3,1% 

Moving   0,0253   
           Spread of Uncertainty 3,1% +/-0,1% 

 
From the table, we can see that there exists a bias current offset in the disk with relation 
to the coil, but the numbers are insignificant, not exceeding 3%, therefore with this data 
amendment we shall not consider matter further.  
 

The Effects of Depths of Modulation on a Self-Inductance 
For a picture of the pattern of system changes relating to self-induction that has 
dependence on disk response, with self-inducting stators positioned on the disk has been 
measured. This is how the curves in Figure 8 were gained. Here curve I gives the change 
in self-inductance of the stators at the angle of rotation of the disk. Curve II represents the 
course of change of the windage losses in the stators from the same argument. Minimum 
R corresponds to a tooth position between the coils (position A). Instead of one 
maximum which was natural to expect at a tooth position against the coil (position B). 
The curve has two maxima located on both legs from standing position (B). As has been 
shown by the special examinations yielded by N.F. Alekseev, the occurrences of these 
maxima are required by the origin of the original “edge effect.” These regional  
effects consist of Foucault’s currents that are induced continuously in the conductors, and 
then settle down in them in such a manner that they always cover the induced floor. 
Therefore, when the tooth on the disk has any edge that enters the magnetic field, the 
induced currents “are obliged” to settle down along this edge, irrespective of the quantity 
of teeth. And all the resistance to the induced current will be mainly concentrated at 
[along] this edge. In the process of removal of the tooth edge from the magnetic field, the 
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resistance will decrease. As the field shape of the induced current will vary with the 
change in position of the particular standing tooth, it is obvious that the self-induction of 
the tooth will vary also. Thus we have a system consisting of primary and secondary 
windings, with a variable coupling coefficient and a self-induction, and the resistance of 
the secondary winding depending on the size of the coefficient. As for windage losses, 
we brought a tooth near a stator winding that was incremented with an increase in the 
ratio of the coupling coefficient and was defined in the given equivalent quantities by the 
formula:  
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Where R—brought losses, 
M—a common reactance 
“between” the coil and the 
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Figure 8: Ideal dependence on self-inductions  
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Table 3 
δmax 

max
2 δ
π

44 0,23 0,146 
5 0,57 0,365 
84 0,595 0,375 
nic corresponding frequency of modulation in a Fourier 
ction ( ) TtL → period of modulation L(t)—a curve of 
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presented in Figure 8. Windage losses in the stators are stated as  
 

( )∫=
T

dttR
T

R
0

0
1           (18)  

 
Where R(t) – the dependence of the losses from a disk’s angle of rotation, i. e., from time. 
Breaking down the L(t) gives the following expression:  
 

( ) ( ) ( ) ( ) .5cos5,04cos17,1673sin17,1672sin16,786sin240623,0 ttttttL ωωωωω ++++−−−+= ooo

 

In Table 3, values are given for maxδ and max
2 δ
π

for three cases.  

From this table it is easily seen that the basic condition (3) for the excitation of hetero-
parametric oscillations is always executed, but there is some discrepancy between 
corresponding values of the first and third columns, and we say that is not being 
considered by us, as it has already been noted elsewhere, due to the influence of the 
disk’s driving motion.  

Increasing Oscillations 
 Increasing oscillations at hetero-parametric excitation has a much more complex 
character, than in ordinary linear systems (with constant parameters). Using the 
approaches and methods specified by A. Mandelstam and N. D. Papaleski,5 
  
 
 
 
 
 
 
 
 
 
 Figure  9 
 
 
it is possible to reduce the problem to a system of two linear differential equations of the 
first order, which do not contain time explicitly. This circumstance presents greater 
advantages as it allows us to apply Poincare’s methods of examination to the properties 
of integrated curves on the phase plane. Acting thus, V.P. Guliaev and V.V. Migulin6 
have analyzed qualitatively the character of increasing tightening at hetero-parametric 
excitation. We have assigned ourselves the task to experimentally approach this problem 
 

                                                 
5Loc. cit.  
6 V.P. Guliaev and V.V. Migulin, Loc. cit. 
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to clearing up the basic features of this process increase, together with the falling off of 
oscillations. With this purpose, we make a photographic entry for different decrements δ 
and m = constant. From the oscillograms in Figures 9 and 10 it is easy to see that the 
speed of increase incrementally increases with the [magnification?] of the difference.  
 

ξδπ
=−m

2
      (19)  
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ure 10: Oscillogram of the increasing oscillations (L) with hetero-parametric excitation. ξ = 0.415 
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simultaneous over-current operation of the mechanical-optical shutter. As the speed of 
the shutter stole up, its opening time was not less than the time of the opening of the 
shutter along the entire length of the plate, and no more than half the period of a 
revolution of the motor.  
 
For a check of the correctness of the definition of the logarithmic decrement of the signal 
attenuation of the parameter measurements, the average values have been removed from 
the signal attenuations of the oscillograms. In Figures 12 and 13 the signal attenuation 
decrements of the oscillograms are shown in corresponding decrements of 0.414 and 
0.555 respectively. From the start both oscillograms have expressed nonlinear character, 
but already after two periods of signal attenuation. A further falling off occurs under the 
exponential law. On a site where the curve is exponentially immediate, we can directly 
from the oscillogram define the logarithmic decrements. In Figure 12 for the decrement, 
we have found that the oscillogram’s datum is δ1= 0.400 rather than 0.414, and from 
Figure 13 we have found that δ2= 0.600, rather than 0.555. With this result anyway it is  
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direct current through the other winding, and this will change the bias of the core to an 
index point on a magnetic hysteresis curve, and that it will at most change the character 
of the nonlinearity (coefficient α and γ in Eq. 91 and 101).  
 
As Eq. 12 and 13 have shown, when we changed simultaneously µ and “detuning” ξ we 
can change the quantity of the stationary amplitude, so let’s shift our attention to 
describing the operational materials. In dependence on whether the character of the 
nonlinearity of the system by iron stators was defined or by the special choke that we 
have essentially gained excellent results from each of the other two modes. One is the 
regime when the amplitude grows with the dimunition of the natural frequency of the 
contour, while the other—on the contrary, when the amplitude grows with an increase in 
the natural frequency. In Figures 14 and 15 both types are presented in comparison. On 
the abscissa axis the changes in capacity are postponed. On an axis ordinate—the 
effective amplitude values of the current go to ones dependent upon the voltages. Both 
cases prove to be true in reality, and also theoretically. 
  

Table 4 
No. 

exper. 
m δ 2ξB 2ξM 

19r 0,35 0,414 26,3 34,0 
19h 0,35 0,47 23,6 18,5 
19 0,386 0,51 31,9 21,8 

 
 
In Table 4, the comparative effects are presented via both experience and based on the 
calculated basis of the formula are presented for the peak detuning  
 

2

22

4
22

π
δξ −=

m  

gained from Table (4).  
In Figure 15 it is immediately obvious from the curve data that I [via] detuning it has 
gained 2 ξ = 31.6%. However, obviously in the expressed tightening of a waning 
amplitude aside from the high frequencies here takes place. The corrected breadth strips = 
26.3%. The satisfactory agreement with the original calculation is gained. Curve II 
immediately gives a detuning of 22.6%. Here with the divergence of nonlinearities the 
calculation is significant. But in this case the factor tightenings in this mode undoubtedly 
takes place, but we are not going to be considering it. At last on Figure 14 we already 
have significant divergence. Here we have two factors influencing a mistake: 1) under the 
influence of a load from a 3-phase motor, a current reduced the speed of rotation by 
7.6%; 2) the greater detuning due to tightenings in this case was gained. The allowance of 
the motor was considered by us, as to the second allowance, without special complex 
measurements, we cannot define it.  
 
Concerning all three cases it is possible to tell the following:  
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The detuning gained by practical consideration, will always be more than calculated by Eq. (7) 
does, because it does not consider absolute tightenings.  
 
We have already previously discussed that we had gained two stationary modes, differing by that 
one nonlinearity is mostly caused by stators (a curve in Figure 14), while the other is gained by 
the means of a special choke that was consistently included in a spark circuit (the curve in Figure 
15). In both cases it is possible to gain at a corresponding detuning very much smaller [instances] 
of stationary amplitude. The amplitude increases with a change of detuning in a determinate 
direction and almost springs [impinges] up to zero with further detuning. It is necessary to thus 
sweep aside that in the case of amplitude regulation by the means of a choke and biasing, the 
amplitude grows with  
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Figure 15: Dependence of stationary stress 
amplitudes (v) from a detuning contour (ξ) 
 
 Figure 14: Dependence on stationary 
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Table 5 

H0 H ∆R 
Ω 

∆L 
X 10-4 seconds 

∆R 
% %

0L
L∆

 

40n 5,6n 0,4 1,0 1,0 0,15 
60n 18,2n 0,6 4,2 1,2 0,7 
80n 37,8n 1,7 7,5 3,4 1,25 

 
These curves allow us to define the quantity of change of the median value of self-
induction (∆L) and signal attenuations (∆R) in a system at various amplitudes (H) of 
parametric oscillations and at various values 
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dimunition of an increment increase up to zero, owing to the change of frequency and the 
signal attenuation, caused by non-linear dependences in the system. As the theory proves, 
this process is related to system occurrences owing to the presence of diverging 
nonlinearities, the reactions amplifying the process of amplitude increase and aspiring to 
compensate for the action of the parameter modulation.  

 
The Analysis of the Oscillations  
 
Until now we viewed the vibrational 
process gained as a result of hetero-
parametric excitation, as presented by 
one harmonic given by the � zero� 
solution of the differential equation to 
the problem. At small depths of 
modulation of the nonlinear parameter 
(10-15%) this solution as shown from 
practical experience, really transmits 
with sufficient approach the entire 
process. Except for basic frequency 
harmonics, half in comparison with the 
modulation frequencies, other harmonics 
are practically missed. At greater depths 

o

Figure 18 

Fig
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f modulation, however, in a basic series according to the theory should play a role and 
have higher harmonics. To realize the structure and 
intensity of these harmonics, and to also make for ( )1 IfLI R =

itself some representation about the influencing 

factors on the raising of the depth of modulation 

( ).2 IfRII R =
up to the point where the phenomena and other 
harmonics appear, a series of experiments were 
carried out and a number of oscillograms taken. 
The analysis of these oscillograms, two of which 
are presented as examples in Figures 19 and 20, 
show that at a depth of modulation of about 35%, 
already at rather small currents the contour curve 

of the current has a rather complex character, and 
with the oscillogram in Figure 19 when it was taken 

ure 19: Oscillogram where i=4 amperes 
at a current in the bias loop of 4 amperes, the 
stationary amplitude was adjusted by changing the 
load in the form of a series of incandescent lamps.  
 
 s 
Figure 20: Oscillogram where i=8 ampere

 

reaking down this curve into a Fourier series, we have discovered the following 
xpression for i:  
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( ) ( ) ( )
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Here it is interesting to note a lack of harmonics. The expansion of the oscillogram in 
Figure 20, which have had a contour taken in a loop at 8 amperes, gives for i:  
 

( ) ( ) ( ) ( )
( ) ( ).6311sin0053,0449sin012,0
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We see, that in this case we have varied the relative intensity of the odd numbered 
harmonics.  
 
A more detailed inspection of this problem (both experimental and theoretical) will be 
given in another article.  
 
This paper is related to a cycle of work that had a common origin in the research of 
Academician L.I. Mandelstam and Professor N. D. Papaleski, which has been made only 
in the last two years at the Leningrad Electro-Physical Institute, Laboratory of Nonlinear 
Systems. Additionally, I recognize Professor N. D. Papaleski, and  I consider it an 
honored duty to express profound gratitude for his valuable suggestions on the present 
work.  
 
Leningrad Electrophys. Inst., July, 1933    edited August 22, 1933 
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“On the Excitation of Oscillations by Parameter Variation (Hetero-Parametric Excitation)”  
By W.A. Lazerev  
 
This work contains an experimental investigation of the conditions for the existence of oscillations in an 
electrical circuit (caused by mechanical vibrations periodically changing the self induction) as well as for 
the amplification of the same. In this case, an alternating current generator, constructed according to the 
principle given by L.I. Mendelstam and N.D. Papalexi, is described and investigated. The results of the 
experiments, both qualitative and quantitative, are consistent with the theory developed by the authors 
mentioned above. 


	Volume IV, Number 1, 1934, pp. 30 – 47.

